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Abstract— The retrieval algorithms for the Earth Observing
System (EOS) Microwave Limb Sounder (MLS) on the Aura
spacecraft, launched on 15 July 2004, are described. These
algorithms are used to produce estimates of geophysical pa-
rameters such as vertical profiles of atmospheric temperature
and composition (‘Level 2’ data) from the calibrated MLS
observations of microwave limb radiance (‘Level 1’ data). The
MLS algorithms are based on the standard optimal estimation
approach, a weighted non-linear least squares optimization with
a priori constraints. New aspects include the adaptation to a two
dimensional system, and an approach to the issues of retrieval
‘phasing’ and error propagation that differs from that taken for
previous similar instruments. Important new aspects of the soft-
ware that implements these algorithms are also described, along
with the algorithm configuration for the ‘version 1.5’ dataset.
Some examples are shown from MLS in-orbit observations.

I. INTRODUCTION

THE Earth Observing System (EOS) Microwave Limb
Sounder (MLS) instrument [1], [2] is one of four in-

struments on the Aura spacecraft that was launched on 15
July 2004. EOS MLS observes thermal microwave emission
from the Earth’s limb in order to measure the composition and
temperature of the atmosphere in the region from ∼8 km to
∼90 km.

This paper describes the retrieval algorithms used in the
ground data processing for MLS. The task of these algorithms
is to convert calibrated measurements of microwave radiances
(known as Level 1B data) into estimates of atmospheric
temperature and composition. The approach chosen is the
standard ‘optimal estimation’ method [3], [4]. As will be
described, this involves the non-linear weighted least-squares
optimization of a cost function describing the fit to observed
radiance signals, including the use of a priori constraints for
regularization. The retrieval process divides into two main
parts: the forward and inverse models. The forward model
computes estimates of radiances that would be observed by
MLS, were the atmosphere in a given state. The task of
the inverse model, as its name implies, is to ‘invert’ this
calculation and deduce an atmospheric state from a given
set of MLS radiance observations. Details of the forward
models used in the MLS retrieval algorithms are given in other
papers in this issue [5], [6]. This paper reviews the retrieval
approach and details the implementation of the inverse model.
More detailed information on these calculations are included
in the ‘MLS Retrieval processes Algorithm Theoretical Basis
Document’ (ATBD) [7].

All authors are at the Jet Propulsion Laboratory, California Institute of
Technology.

Most of the MLS data retrieved by these algorithms describe
vertical profiles of geophysical parameters along the measure-
ment track of the instrument. Such products are known as
Level 2 data. The task of producing these is called Level 2
processing, and is the main subject of this paper. Some MLS
data products have a sufficiently poor signal to noise ratio
that individual vertical profiles are not useful for scientific
study due to their poor precision. For these ‘noisy’ products,
some form of averaging is required to produce data with better
precision, such as daily or weekly zonal means, or monthly
global maps. Products such as these, being on regular latitude
and/or longitude grids, are known as Level 3 data. While these
products can be obtained by averaging together large volumes
of Level 2 data, an alternative approach for retrieving them
directly is described in section IV.

II. FUNDAMENTALS OF RETRIEVAL THEORY

A. The retrieval problem
The task of the retrieval algorithms is to determine the

state of the atmosphere that best matches the observed MLS
radiances. This state is represented by the ‘state vector’ x of
length n, which in the MLS case, as is typical, represents
vertical profiles of atmospheric temperature and composition,
along with other parameters described later. A ‘measurement
vector’ y of length m is constructed describing the radiance
observations. A forward model is formulated that describes the
radiances that MLS would expect to see, were the atmosphere
in a state represented by the value of x according to

ŷ = f(x). (1)

These predicted radiances ŷ are compared with the observed
MLS radiances y and the minimum is sought of a χ2 statistic
defined as

χ2 = [y − f(x)]
T

S−1
y [y − f(x)] , (2)

where Sy is the matrix describing the noise covariance of
the measurements. The MLS algorithms invoke the standard
Gauss-Newton approach to the minimization which iteratively
arrives at a value of x that minimizes χ2 by invoking

x(q+1) = x(q) +
[

KTS−1
y K

]−1
KTS−1

y

[

y − f(x(q))
]

, (3)

where q is the iteration counter and

K =
∂f(x)

∂x

∣

∣

∣

∣

x=x(q)

(4)

is known as the ‘Jacobian matrix’ or matrix of ‘weighting
functions’. In most cases the KTS−1

y K matrix to be inverted
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in (3) is singular, indicating that there are aspects of the
state vector about which the measurements have yielded no
information. This is remedied by adding ‘virtual measure-
ments’ to the y vector. As there is no covariance between
the virtual and real measurements, the Sy matrix is block
diagonal, allowing us to separate the measurement vector into
two: real measurements (y) and the virtual measurements (a).
Often (and in the case of the MLS retrieval system), the virtual
measurements take the form of an a priori estimate of the
state vector a with covariance Sa. The forward model for
these virtual measurements is an identity operation, leading to
a weighting function matrix that is simply the n × n identity
matrix. The iteration then becomes

x(q+1) = x(q) +
[

KTS−1
y K + S−1

a

]−1

[

KTS−1
y

(

y − f(x(q))
)

+ S−1
a

(

a − x(q)
)]

. (5)

This is similar to the actual iteration used in the MLS
case. The next section will detail additional constraints on
the smoothness of the retrieved profiles, and the use of a
Levenberg-Marquardt parameter to aid convergence.

This algorithm also gives an estimate of the uncertainty in
the state vector according to

Sx =
[

KTS−1
y K + S−1

a

]−1
. (6)

B. Retrieval ‘phasing’ and constrained quantities
Most retrieval algorithms are implemented as a series of

phases. Typically an initial retrieval of temperature and pres-
sure information is performed using observations of radiance
emitted by a molecule whose abundance is well known
(usually CO2 in the infrared and O2 in the microwave).
Later phases of the retrieval process use this temperature and
pressure information in retrievals of species abundances such
as ozone and water vapor. Many previous retrieval approaches,
such as the version 5 algorithms for the earlier Microwave
Limb Sounder instrument on the Upper Atmosphere Research
Satellite (UARS) [8] fix the temperature and pressure at the
previously retrieved values in these later phases. When doing
retrievals in this manner, it is often important to budget for
the uncertainty in these constrained quantities by inflating the
errors on the radiances used to retrieve the species abundances
according to

Sy → Sy + KcScK
T
c , (7)

where Kc represents the derivative of the species radiances
with respect to the constrained quantities c retrieved earlier
(e.g., temperature and pressure) and Sc is the uncertainty in
these quantities as reported by (6) in the earlier phase.

While for many instruments (including EOS MLS) the
original Sy matrix is diagonal (or can be assumed to be so
to a reasonable level of accuracy), the addition of errors on
constrained quantities typically results in a fully populated
matrix. As this matrix is required to be inverted in (5),
this represents a significant increase in computational effort.
Indeed, in the case where m � n (as with EOS MLS)
this computation becomes by far the most intensive aspect

of the retrieval computation. Clearly it is desirable to retain a
diagonal form for Sy if possible.

The solution to this issue adopted by the MLS algorithms
is to continue to retrieve the previously estimated quantities
(temperature, pressure, etc.) in the later retrieval phases, in-
cluding the same radiance information as used to retrieve them
in the earlier phases. Continuing to include these quantities
in the state vector retains the efficient diagonal form for
Sy. This begs the question as to what purpose is served
by the earlier phases — if the same parameters are to be
retrieved in the later phases, with arguably better quality,
as more radiance information is available. The later phases
involve large state and measurement vectors, and therefore
significant forward model effort. Reducing the number of
iterations required for such expensive phases is clearly an
important goal. As the parameters targeted by the early phases
(such as temperature and tangent pressure) are typically the
most non-linear, performing several iterations of the simpler
earlier phases should leave the state vector close to the correct
solution for these parameters in the later phases, reducing
the number of iterations likely to be required. The task of
the early phases can be regarded as that of obtaining a good
starting point for the later phases. More details on the specific
implementation of this approach are given in section VI.

C. Characterizing retrieval results
1) Estimated precision: Care should always be taken when

interpreting results obtained from retrieval algorithms such as
those used in the MLS Level 2 processing, and attention should
be paid to several important diagnostics. Firstly, the estimated
precision of the retrieved products should be considered. In the
EOS MLS case (as is typical), this is reported as the square
root of the diagonal elements of the solution covariance matrix
from (6). Careful comparison should be made between this
and the uncertainty quoted for the a priori information by the
Sa matrix. If little difference is observed between elements
of the estimated precision and the corresponding a priori
uncertainties, it implies that the instrument has contributed
little additional information on these elements of the state
vector, and that they should probably not be used in scientific
study.

2) χ2 statistics: In addition to the estimated precision, the
value of χ2 obtained at the solution should also be considered.
Solutions where χ2 � m − n should be avoided, as a poor
fit to the radiances has been achieved. In the MLS case,
χ2 quantities are reported in a normalized manner, being
divided by the number of measurements considered. Under
these circumstances χ2 should be about unity at the solution,
and results corresponding to significantly larger values are
flagged as suspicious.

3) Averaging kernels: Another important quantity in diag-
nosing retrieval performance is the ‘Averaging Kernel’ matrix,
given by

A =
∂x̂

∂x
=

[

KTS−1
y K + S−1

a

]−1
KTS−1

y K. (8)

For the purposes of this equation x is the unknown true state of
the atmosphere (so far as it can be represented in state vector
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form) and x̂ is the retrieved estimate from the iteration in
(5). Each row of this matrix describes how the corresponding
element of the retrieved state vector has been influenced by
all the elements of the true vector. Each column of the matrix
represents the influence of a delta function perturbation of the
corresponding element of the true state vector on the retrieved
vector.

In the case where the state vector represents vertical profiles
of atmospheric temperature and composition, measures such
as the full width at half maximum of the averaging kernels
are often used as a measure of the vertical resolution of the
measurement system.

4) Profile representation issues: In the particular case of
the MLS retrieval system, the state vector represents vertical
profiles of atmospheric species in a piecewise linear manner.
The only exception is water vapor where the representation is
piecewise linear in log[volume mixing ratio (vmr)]. This con-
trasts with the common alternative approach, which considers
the state vector to represent layer means. Special consideration
of the MLS interpretation of the state vector needs to be made
when comparing retrieved MLS data to other datasets.

Consider a simple MLS state vector xcoarse representing
a single temperature profile on fixed pressure surfaces, and
another vector zfine describing a temperature measurement on
a finer vertical grid (such as from a radiosonde, or GPS).
It transpires [5] that to compare the two measurements, in
addition to applying the averaging kernels, one needs to
transfer the higher resolution profile onto the MLS grid by
applying the transformation

zcoarse =
[

ηTη
]−1

ηTzfine, (9)

where the η matrix describes a linear interpolation convert-
ing the low resolution MLS representation to that of the
radiosonde

xfine = ηxcoarse. (10)

III. APPLICATION TO MLS RETRIEVALS

A. The two dimensional approach to the retrieval problem
Figure 1 shows the viewing geometry for the EOS MLS

instrument. It can be seen that the limb observations from
consecutive scans cover significantly overlapping regions of
the atmosphere. The MLS Level 2 software retrieves individual
vertical profiles at approximately the same horizontal spacing
as the individual limb scans (known as major frames). The
overlap in the limb observations is such that the radiances for
each limb scan are influenced by several consecutive retrieved
profiles. If the retrieval algorithm is to be accurate, it must
take this influence into account.

The approach taken in the EOS MLS Level 2 software
is to divide the data into ‘chunks’, typically consisting of a
15◦ span of great circle angle’s worth of observations (about
10 vertical scans). Retrievals are performed for each of these
chunks independently. The state vector consists of N sets of
vertical profiles (N temperature profiles, N ozone profiles,
etc.), with retrievals being performed using measurements
from M radiance scans. The results from the individual chunks
are joined together to produce a complete set of output for the

day. Beyond the ends of each chunk, the forward model and
retrievals have to assume horizontal homogeneity within the
atmosphere. This assumption leads to edge effects, with the
results for the first and last few profiles in each chunk having
poorer quality. To alleviate this effect, the chunks overlap
slightly and the profiles retrieved in overlap regions (i.e., close
to the end of one chunk but also retrieved in the mainstream
of its neighbor) are discarded. The spacing of the retrieved
profiles is typically chosen to match that of the scans, so that
N ' M . Occasional differences between N and M arise as
the relationship between the scans (which are approximately
evenly spaced in time) and the retrieved profiles (evenly spaced
in great circle angle) wanders due to orbit eccentricity and
earth oblateness.

The state vector is broken into N subvectors xi each of
length n consisting of a vertical profile of temperature, compo-
sition, etc., along with possible additional terms described by
x� that are constant throughout the chunk (such as instrument
calibration or spectroscopy terms).

x =















x�

x1

x2

...
xN















(11)

The measurement vector can be similarly broken into M sets
of measurements yi (each of length m) corresponding to the
individual scans.

The weighting function matrix K describes the sensitivity of
the M radiance scans to each of the N profile sets. This matrix
has a significant amount of sparsity as, for example, the state of
the atmosphere for profile number 10 has no influence on the
radiances observed in scan number 1. This can be described
by a sparsity parameter p, indicating the number of profiles
influencing a single vertical scan. The weighting function
matrix K is of a singly bordered block band diagonal form as
illustrated for the highly simplified case where N = M = 6,
p = 3.

K =

















× × × 0 0 0 0
× × × × 0 0 0
× 0 × × × 0 0
× 0 0 × × × 0
× 0 0 0 × × ×

× 0 0 0 0 × ×

















, (12)

where 0 denotes a block in the matrix that has zero for all
elements, and × denotes a block with one or more non-
zeros. The block rows of K correspond to the M individual
scans; the first block column indicates the sensitivity of those
scans to the x� term while the other columns indicate the
sensitivity to the xi subvectors. The value of p is determined
by the geometry of the MLS measurements. However, for
computational efficiency it can be useful to limit p to a
smaller value (such as 5), leading to sparser forms for K.
This is achieved by assuming horizontal homogeneity beyond
the region p/2 + 1 profiles away from each scan.
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Fig. 1. The top plot shows the viewing geometry of EOS MLS, which observes limb radiances in the forward direction. The lower plot is an expansion of
the boxed region in the upper plot. Here, 3 of the 120 limb ray paths for five scans are shown by the nearly horizontal lines. The loci of the geometrical limb
ray tangent points (point along the ray closest to the earth’s surface) are shown by the thick black, angled lines. The kinks in these lines are due to a change
of vertical scan rate (the instrument spends more time observing the troposphere and lower stratosphere than the upper regions of the atmosphere in order
to improve the information yield from the lower regions). The thinner curved lines show the loci of the refracted (i.e. true) tangent points. The thick black
radial lines represent the locations of the retrieved atmospheric profiles.

In the case where Sy is diagonal, the KTS−1
y K matrix of

(5) has the form

KTS−1
y K =





















× × × × × × ×

× × × × 0 0 0
× × × × × 0 0
× × × × × × 0
× 0 × × × × ×

× 0 0 × × × ×

× 0 0 0 × × ×





















. (13)

This is a doubly bordered block band diagonal matrix having
a block-bandwidth of 2p − 1. The formation of this matrix,
which, because m � n is the most time consuming aspect
of the inverse model, scales as Np2n2m (neglecting the x�

terms). The key point to note is that it scales linearly in N,
so, the same amount of CPU time is required to retrieve 10
chunks of 10 profiles each as to retrieve a single 100 profile
chunk, excluding the consideration of overlap regions.

Significant efficiency of storage can be gained by recogniz-
ing that

KTS−1
y K =

M
∑

i=1

KT
i S−1

yi
Ki, (14)

where Ki represents the ith of the M block rows of K

and Syi
similarly for Sy. Similar simplifications are possible

with the KTS−1
y

[

y − f(x(q))
]

terms. This means that each
iteration can be accomplished needing storage for only one
block row of K rather than the entire matrix, a significant
saving. The KTS−1

y K matrix still needs to be stored in its
entirety. However this matrix is significantly smaller than K

as m � n, and, being sparse, its storage can be efficient.

B. Major components of the MLS state vector

The ‘standard products’ for the MLS data processing are
vertical profiles of temperature and species abundances for
selected molecules on fixed pressure levels. For most of the
MLS products, there are six surfaces per decade change
in pressure, starting from 1000 hPa, with the grid spacing
coarsening to three surfaces per decade for pressures less
than 0.1 hPa. Of course the true vertical resolution of the
information obtained by the retrieval algorithms is often poorer
than the spacing of this reporting grid. In addition to these
abundances and temperatures, the geopotential height of a
fixed pressure surface (typically 100 hPa) is included. A full
vertical profile for geopotential height is not required (or
even desired) because, through consideration of hydrostatic
balance, the geopotential height profile can be computed from
the temperature profile and the single geopotential height.
Including a full geopotential height profile would lead to
redundancy in the state vector and consequent instability in
the retrieval system.

Further parameters are required in the state vector for the
forward model to accurately predict the radiances that would
be observed by MLS. The most critical of these are the
tangent pressures for the mid-point in time of each individual
limb integration period (known as a minor frame) for both
the GHz and THz vertical scans. These are defined as the
atmospheric pressure at the tangent point of the limb ray
(taking into account refraction effects). The tangent point is
the closest point on a limb ray to the earth’s surface. Figure 2
shows an example of how the radiances change as a function
of tangent pressure. As most of the MLS radiance signals
are strongly determined by pressure broadening, the tangent
pressure is clearly an important coordinate by which to define
the observations (as opposed to, for example, tangent height).
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Fig. 2. Sample MLS radiances as a function of tangent pressure. The different
lines represent different MLS spectral channel observations of emission from
the 118 GHz O2 line. High altitude observations typically correspond to
measurements of an optically thin atmosphere, leading to small radiance
signatures. As the instrument looks lower down, radiances increase as the
atmosphere thickens. Toward the bottom of the scan the radiances ‘saturate’
(the knee on the radiance curves). Here the atmosphere is sufficiently optically
thick that the instrument does not see all the way to the tangent point,
instead the bulk of the signal emanates from a region higher up, closer to
the instrument. Channel 1 is furthest from the line and thus in a region where
the atmosphere is optically thin down to around 10 hPa. Channel 13 is centered
on the line, so the atmosphere is optically thick in this spectral region even
when looking in the lower mesosphere. The dependence of radiance on tangent
point pressure is clearly non-linear in nature. These data are taken from the
average of the first 100 scans taken by MLS on 30th August 2004.

C. Continuum emission and ‘baseline’
Most of the MLS products are derived from observations of

spectral contrast. The frequency resolution of the instrument
is such that it can resolve individual spectral lines of the target
molecules over most of the vertical retrieval range. It is the
MLS observations of the shape of these lines, as captured in
the radiance differences from channel to channel, that yield the
retrieved estimate of the geophysical parameters, rather than
the absolute radiance values themselves.

Our knowledge and understanding of absolute radiance is
generally poorer than that of their spectral shape, due both
to instrumental effects (such as thermal emission from the
MLS antenna and other reflectors or spectrally broad variations
in instrument gain), and forward model limitations (such
as uncertainties in continuum spectroscopy). Although the
spectral signatures of the target species are largely orthogonal
to these spectrally broader effects, some residual impact can
be seen on the MLS products if the spectrally broader terms
are not considered in the retrieval algorithm.

The MLS state vector includes terms designed to account for

such spectrally broad phenomena, and these are retrieved along
with the target species. These terms fall into two categories
known as ‘extinction’ and ‘baseline’. Typically only one of
these is retrieved, as the signatures of the two are highly
correlated and thus hard for the retrieval to appropriately
distinguish. Baseline terms are spectrally flat radiances that
can be uniformly added to each radiance observation in a
radiometer. The software allows these to be described either
as a set of vertical profiles as a function of tangent pressure,
or as an independent value for each minor frame of radiance
observation. This is useful for capturing most spectrally broad
artifacts that have an instrumental origin.

Alternatively, the extinction parameter is better suited to
capturing spectrally broad features due to problems with
modeling of atmospheric transmittance. While these have a
spectrally flat impact on a local scale in the atmosphere,
their impact on the MLS radiance signals is not necessarily
spectrally flat. For example, the impact of the extinction
at 100 hPa on radiance observations having 100 hPa tangent
pressures is significant in transparent channels, and negligible
for channels where the stratosphere is optically thick. Un-
fortunately, this parameter has a highly non-linear impact on
the measurement system, most notably when it is invoked to
reduce radiances (i.e., negative mixing ratios of the extinction
‘molecule’ are required). This can lead to significant instability
in the retrieval, particularly in cases where cloud scattering can
lead to radiance suppression. Therefore, in the v1.5 algorithms
(producing the first publicly released dataset, as described
later), only the baseline term is considered in the retrievals.

D. Minor components of the state vector
There is a distinction drawn in retrieval algorithms between

parameters passed to the forward model for which solutions
are sought (such as the quantities described above), and other
quantities required by the forward model for which a priori
knowledge is sufficient. The latter quantities include such
things as the spacecraft velocity, used for determining Doppler
shift effects, and knowledge of the microwave background
space radiance. Although not retrieved, such quantities are
often loosely referred to as being ‘in the state vector’ in the
MLS algorithms. In addition, the forward model also requires
detailed spectroscopic and instrument calibration information
[5].

E. The use of tangent height information
In addition to the MLS radiance observations, the tangent

point altitude information obtained from the MLS antenna
position encoder and Aura attitude determination system can
be considered to be indirect measurements of the state vector.
Given the state vector description of the atmospheric temper-
ature profile, the estimated pressures at the tangent points,
and the geopotential height of a reference pressure surface,
a forward model estimate of the Level 1 tangent heights
can be constructed based on considerations of refraction and
hydrostatic balance [5].

Typically the MLS radiance observations convey informa-
tion on tangent pressure over a somewhat limited vertical
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range of limb tangents. Near the top and bottom of the scans
the spectral contrast in the MLS radiances is not strongly
dependent on tangent point pressure, as shown in figure 2.
The inclusion of the tangent point height information in
the retrieval system can extend knowledge of tangent point
pressure into these regions.

The inclusion of this height information has made the need
for an a priori constraint for tangent pressure unnecessary,
and indeed undesirable. Any such estimate would have to be
taken from the same tangent point altitude information given
in the measurement vector. Thus, including an a priori term for
tangent pressure would amount to using the same information
twice. Accordingly, the a priori contribution is nullified by
setting the appropriate rows and columns of the S−1

a matrix
to zero. Although the absence of these virtual measurements
can in principle lead to the matrix inversions in (5) being
singular, it can be shown that the inclusion of the tangent
height information guarantees successful inversion.

F. The Tikhonov smoothing constraint

In retrievals from remote sounding instruments, there is
often some trade off to be made between the precision and
resolution (typically vertical, but horizontal is also relevant)
of the retrieved product. This trade off can be controlled by
adding constraints on the smoothness of the results in the
retrievals. Often, such as in the UARS MLS version 5 dataset
[8], these constraints are implemented by adding off-diagonal
terms to the estimated error covariance matrix for the a priori
terms (Sa).

For the EOS MLS retrievals however, an alternative ap-
proach is implemented using a second order Tikhonov con-
straint. This places a soft constraint (i.e., additional term in
χ2) on the magnitude of the second derivative (vertically and
horizontally) in the retrieved profiles. It is implemented as
an additional set of virtual measurements that the derivatives
are zero on average, within some appropriate covariance. The
weighting function matrices for these virtual measurements
are based on binomial coefficients similar to the (n − 2) × n
matrix

K '
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(15)
Constraints on higher order derivatives can be achieved

by using higher order binomial coefficients. The actual form
of the K matrices used is more complicated, partly because
we introduce one set of virtual measurements to describe
horizontal smoothing and another for vertical, and partly
because we wish to provide a height-dependent weighting for
the smoothing terms [7].

The horizontal and vertical smoothing terms, scaled as de-
scribed above, are combined in a matrix R, giving a modified

Gauss-Newton iteration according to:

x(q+1) = x(q) +

[

S−1
a + RTR +

∑

i

KT
i S−1

i Ki

]

−1







S−1
a

[

a − x(q)
]

+ RTR
[

a − x(q)
]

+

∑

i

KT
i S−1

i

[

yi − fi(x
(q))

]







(16)

The choice of weighting for the smoothing parameter is
largely made on scientific grounds according to the desired
precision and/or resolution for each product. Typically the
smoothing constraint is turned off at the higher reaches of
the retrieved profiles, where the inherent resolution of the
measurement (i.e., that it would have were no smoothing
constraint applied) is already poorer than about 6 km in the
vertical.

G. Numerical stability concerns and scaling
The physical disparity of the MLS state vector (temperatures

have typical values of 150–300 K, while BrO mixing ratios
have values of order 10−11 vmr) gives rise to numerical
stability concerns for the algorithm. As it transpires, however,
the measurement vector does not present a concern in the
MLS case, as it contains either radiances in the 0–300 K
range or scan residuals of order ±300 m. In addition, the
multiplication by S−1

y effectively scales the measurements into
a dimensionless space in any case.

This large dynamic range within the state vector leads to
large variations from column to column in the values of K.
Despite this, the formation of the KTS−1

y K matrix is actually
numerically stable in our case where Sy is diagonal. The
matrix product is essentially the result of a set of dot products
of every column of K with every other column of K. The
terms summed together to form one of these dot products are
all related to the same pair of state vector elements, so they all
have the same physical units. Thus, no special care need be
taken of small numbers that might get lost in the summation;
small terms are by their nature insignificant.

However, the matrix inversion in (16) is a concern. The
matrix to be inverted contains a large range of numbers (being
related to the square of the state vector), which need to
be combined in a series of multiply / addition operations.
To alleviate this concern, an element-by-element scaling is
applied to the state vector before the inversion such that the
diagonal elements of the matrix all become unity. Once the
inversion and the rest of the computation is completed, the
resulting state vector and covariance matrices are returned to
their original units.

H. Non-linearity and convergence issues
While the Gauss-Newton minimization technique is excel-

lent for linear and moderately non-linear systems, its under-
lying assumption of linearity can lead it to take inappropriate
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steps in more seriously non-linear situations. For these sit-
uations, the Levenberg-Marquardt [9], [10] stabilization is a
common solution. This involves simply adding a matrix λ2I

to the matrix to be inverted in (16), where λ is a scalar chosen
each iteration, and I is the n×n identity matrix. This term is
added to the matrix after the scaling described in the previous
subsection is applied. When small values of λ are chosen, the
step taken is clearly close to that which would be taken by
a regular Gauss-Newton iteration. Larger values of λ result
in a smaller step, closer to the more conservative ‘steepest
descent’ iteration. The value of λ chosen for the first iteration
is a user input, chosen based on the degree of non-linearity
anticipated. In later iterations the value of λ is chosen based
on the progress made to that point using the method of [11].

Before each iterative step is taken in the minimization of
χ2 in (16) with the additional λI term above, it is possible
to compute the value of χ2 we would find at the destination,
were the system truly linear. This is done by substituting the
value of x from (16) into (2) and recognizing that in the linear
regime

f
(

x(q+1)
)

= f
(

x(q)
)

+ K
[

x(q+1)
− x(q)

]

. (17)

In addition, it is similarly possible to compute the value we
would expect χ2 to take at the postulated minimum, again
assuming linearity. For the case of Gauss-Newton iteration
(where the Levenberg-Marquardt parameter λ is zero) these
are of course the same location.

These two pieces of information can be useful in deter-
mining iteration strategy. Comparison of the value of χ2

found at the destination with that which was expected yields
information on the amount of non-linearity in the system. This
can be considered when choosing the value of λ to use in
the next iteration. Alternatively, in the case where particularly
poor reduction (or even increase) in χ2 is observed, the
algorithm may choose to retreat and select a different λ for the
current step. More details of this decision process are given
in Appendix C of [7].

The value of χ2 estimated to be at the true minimum is
useful in deciding when satisfactory convergence has been
obtained. For example, for the first post-launch version of the
MLS Level 2 software, iterations cease when χ2 is within
2% of the value that is predicted to exist at the minimum.
There are cases where convergence is hard to achieve within
a reasonable amount of time. To guard against these, each
phase has a maximum number of iterations allowed. If this
is exceeded, the best state achieved is output (along with the
appropriate diagnostics, which may reflect the poor nature of
the consequent radiance fit).

IV. AN ALTERNATIVE APPROACH FOR ‘NOISY’ PRODUCTS

Some of the molecules EOS MLS is designed to observe
have particularly small mixing ratios, and weak emission
lines. The corresponding radiance observations thus have poor
signal-to-noise ratios, leading to noisy retrievals. For these
products, more useful scientific information can be obtained
by considering averaged products, such as daily zonal means,

or monthly maps. There are several ways to compute such
quantities.

One approach is simply to retrieve these products in the
same manner as the others, and then use whatever averaging
technique is appropriate afterwards. The disadvantage of this
method is that, unless special care is taken, the a priori
information can significantly bias the results, as it is included
in each separate retrieval. This is the approach taken for
the version 1.5 of the MLS data processing software (using
appropriately large values for the a priori uncertainty for the
species of interest).

A second approach is to average the radiances from the
relevant bands in whatever manner is appropriate, and then to
perform retrievals on the averaged radiances. This method has
a problem however when the lines of interest are contaminated
by strong, nonlinear emission from other, highly variable
molecules. This is the case for example with some of the MLS
BrO radiance observations in the mid- and lower stratosphere,
which are close to a strong O3 line.

The best approach to this problem is to retrieve the averaged
products as a separate task, after the main processing has
occured. Rather than using averaged radiances as above,
however, the full radiance data set for the relevant band is
considered. Consider the iterative retrieval expression given
in (16). In the linear (i.e. single iteration, with initial guess
x = a) case, this reduces to

x = a +

[

S−1
a + RTR +

∑

i

KT
i S−1

i Ki

]

−1

∑

i

KT
i S−1

i [yi − fi (a)] . (18)

Now for the case of the noisy products, take x to be a
specific component of an averaged dataset (e.g., a single profile
corresponding to one latitude in a monthly zonal mean re-
trieval). Consider the measurement vectors yi to represent each
individual scan in the relevant spectral band that contributes to
this component (e.g., all the scans in the latitude range under
consideration that month.) The forward models for each scan
use the previously retrieved values for the other molecules
and parameters that affect the radiance measurements (O3,
temperature, tangent pressure, etc.) as constrained quantities.

It is possible to take this method further by defining x0

as the value of the product retrieved by the standard Level 2
processing. Let the vector b contain all the other aspects of the
state retrieved by the Level 2 algorithms (ozone, temperature,
etc.).

It is clear therefore that

yi − fi (a,b) = yi − [fi (x0,b) + Ki (a− x0)] (19)

The retrieval calculation (18) then reduces to:

x = a +

[

S−1
a + RTR +

∑

i

KT
i S−1

i Ki

]

−1

[

∑

i

KT
i S−1

i [yi − fi (x0,b)] −KT
i S−1

i Ki [a − x0]

]

. (20)
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Accordingly, by having the Level 2 software gather appropriate
sums of the KT

i S−1
i Ki matrices and the KT

i S−1
i [y − fi (x0)]

vectors, the ‘noisy products’ algorithm need not invoke any
forward model calculations. All that is required is that values
of the above matrix and vector are collated together appropri-
ately, including the correction term KT

i S−1
i Ki [a − x0] where

x0 is taken from the standard Level 2 product, and the final
state computed as the result of (20).

Extending this to allow it to follow from a full two-
dimensional Level 2 calculation is achieved by defining x to be
the mean of all or several profiles in the chunk and collapsing
together the appropriate block columns of the Ki matrices.
The issue of errors on constrained quantities has not been
considered for this problem. It is possible that these should
be considered, and a non-diagonal form for Si used. This
would make it harder for the ‘noisy products’ algorithm to
avoid invoking forward model calculations. The issue will be
investigated when these algorithms are developed.

V. IMPLEMENTATION IN SOFTWARE

The algorithms described in section III have all been im-
plemented in a single ‘MLS Level 2 software program’ in
the Fortran 95 programing language, chosen because of its
great suitability to handling the complex matrix and vector
entities involved. The program was designed to be as flexible
as possible, and is controlled by a ‘Level 2 Configuration File’
(L2CF) that is effectively a high-level programming language.

The L2CF controls all aspects of the software, defining
the contents of state and measurement vectors, defining the
configurations of the various forward models available, reading
appropriate a priori, spectroscopic and calibration data, per-
forming retrievals, doing forward model runs for simulations
or off-line analysis, post-processing results, computing diag-
nostics and outputting results in appropriate files. In production
mode, the software operates in a parallel form, with one
instance of the program acting as a master, coordinating the
work of multiple slave instances on a cluster of computers,
each computing the results for individual chunks of data as
described in section III-A. The software can also be run on-
line for single chunks or simple one dimensional retrievals
of individual profiles. The on-line mode is enhanced by the
ability of the software to communicate with a separate program
(written in the IDL language from Research Systems Inc.) that
presents a graphical interface into the algorithm, allowing the
user to see the current state and measurement vectors and
many diagnostics, and to monitor the progress of retrievals
(effectively acting as a graphical debugger).

In addition to the ability to do conventional retrieval calcu-
lations, producing Level 2 Geophysical Product (L2GP) output
files from input L1B radiance data, the software can also
produce L1B files of simulated radiances based on a state
vector formed from a set of L2GP files taken as input. This
capability was used extensively prior to launch for generating
radiance fields corresponding to known atmospheric states.
Developing a different program to perform that essential task
would entail the duplication of all the relevant code for
initializing the forward model and constructing the state vector.

Combining both the retrieval and simulation tasks in a single
piece of software makes it far easier to ensure that identical
forward model algorithms and parameters are used for both
tasks, and dramatically reduces the complexity of the code
maintenance effort.

In addition to these tasks, the Level 2 software has proved
flexible enough to have been used for a large variety of other
tasks, from those as mundane as translating MLS Level 2 data
files from an older version of their format (based on HDF-EOS
version 4) to a newer one (HDF-EOS version 5), to as complex
as doing a retrieval using monthly zonal mean radiances, or
pre-computing tables to be used in the linear forward model
[5].

VI. RETRIEVAL APPROACH FOR VERSION 1.5
To this point, this paper has described the EOS MLS

retrieval algorithms in a fairly general sense. In this section
we describe the particular configuration of the software used
to generate the version 1.5 (v1.5 hereafter) EOS MLS Level 2
data, the first publicly released MLS dataset. This section
should be regarded as a snapshot of the current configura-
tion, as future versions of the data processing algorithms are
planned.

A. ‘Standard’ products, and ‘Diagnostic’ products
The geophysical products from the MLS retrieval algorithms

can be divided into two categories. Each of the ‘standard’ MLS
geophysical products are output in separate files with a daily
granularity. The ‘standard’ products are the science team’s
‘best’ estimate of that product from the MLS observations.
Typically they are taken from the MLS observation of that
species in a particular frequency region. For example, in the
version 1.5 processing, the standard product for ozone is the
ozone as retrieved from the 240 GHz radiance information.

In later versions, it is intended that the standard products
for many species will be formed from some optimal combi-
nation of the information obtained from all the relevant MLS
radiances (ideally from one comprehensive retrieval phase).
However, changes in instrument configuration, such as the
temporary power down of one radiometer, or the changing
of the MLS switch network [1] will impact these products,
as they change the whole MLS measurement system. Such
retrieval schemes have not yet been implemented, pending
improvements in computer resources, and in understanding of
any systematic differences seen between the estimates obtained
in the different MLS radiance signals.

For analyses such as trend studies, it may be more ap-
propriate to consider the ‘diagnostic’ MLS products. These
are simply the products retrieved from each retrieval phase
independently. Being based on only a single radiometer (plus
the 118 GHz signal used in the retrieval temperature and
tangent pressure in all phases), these may be less sensitive
to any changes in instrument configuration. As an example,
consider nitrous oxide, for which there are two diagnostic
products: N2O-190, and N2O-640, corresponding to retrievals
using 190 and 640 GHz radiance observations respectively.
Of these, N2O-640 is generally considered superior, so the
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standard product for N2O is currently simply a copy of the
N2O-640 product. Table I details how each of the standard
products is derived from the diagnostic products in v1.5.

B. The Core, Core+Rn approach
The phasing approach described in section II-B has been im-

plemented in what is known as the ‘Core, Core+Rn’ approach
in the v1.5 algorithms. In the ‘Core’ phase of the retrievals (ac-
tually three separate phases), retrieved estimates are obtained
for the tangent pressure, temperature, and upper tropospheric
humidity aspects of the state vector. These are obtained from
the R1A 118 GHz observations of emission from O2 (mainly
for temperature and pressure) and selected channels from the
R2 190 GHz observations (mainly for upper tropospheric water
vapor). This is followed by phases such as ‘Core+R2A’ and
‘Core+R2B’ where, in addition to temperature and pressure,
other species such as water vapor, ozone and nitric acid are
retrieved. The phases are summarized in Table II.

Section II-B described how the cumulative approach to
retrieval phasing is preferable to performing constrained quan-
tity error propagation. However, in pre-launch testing, it was
decided that this approach was not universally appropriate. In
particular, it was found that retrievals including tropospheric
water, a species whose impact on the MLS radiances is very
nonlinear, were prone to instability. Accordingly, once an
appropriate estimate for this is obtained (in the Core+R2A
phase), it is constrained in later phases. No propagation of the
errors associated with constraining water vapor is performed
in the later phases. Investigation showed that the error involved
in neglecting this propagation is insignificant, mainly because
the impact of upper tropospheric water vapor on most of the
MLS radiances is fairly spectrally flat and largely orthogonal
to the signatures of other species.

Other minor deviations from the strict implementation of
the planned scheme have been chosen. In particular, in the
‘Core+R4B’ phase, targeting N2O from the 640 GHz ra-
diometer, the ozone abundance, rather than being retrieved
is constrained to previously retrieved values with no error
propagation. Knowledge of the ozone signature in the N2O
spectral region is somewhat uncertain, and this approach was
found to produce generally preferable results for N2O.

C. Flagging the presence of clouds in v1.5
While microwave signals are far less sensitive to the pres-

ence of clouds in the atmosphere than are shorter wavelength
signals, very thick clouds can have an impact large enough
to affect MLS measurements of gas phase composition. The
Level 2 software needs to be able to identify such radiances
and deal with them appropriately. In addition, the cloud
signatures can be used to measure cloud properties [12].

The mechanism whereby clouds affect the MLS radiances
is mainly scattering of microwave radiation. The details of the
impact vary both from channel to channel and as a function
of limb ray tangent height. Optically thin observations in a
channel (those that are less than about 50% of the radiance at
saturation) can be affected by both scattering and emission
from clouds, which leads to an unexpected enhancement

in radiance. Radiance observations lower down, where the
radiances are close to or beyond saturation, can be affected
by scattering from clouds, which leads to suppression of the
radiance signal. While the cloud scattering and emission ef-
fects are spectrally broad in nature, the impact of these effects
on the MLS limb observations are frequency dependent and
become more severe as the radiances get closer to saturation.
For example, a cloud at 100 hPa affects channels where the
atmosphere is optically thin enough to allow MLS to see
down to that level. However, channels that do not see down
to 100 hPa are unaffected.

The MLS Level 2 software therefore takes steps to avoid
considering radiances that are thought to be strongly affected
by cloud effects, and/or report an increased uncertainty on
them. These impacted radiances are identified by comparing
the MLS radiance observations in selected optically thin
channels (most suited to cloud detection) in each radiometer
with those predicted from forward model calculations. The
gas phase retrievals are instructed to ignore or downplay
radiances where large differences between observation and
model are observed. This activity is performed at three distinct
points during the v1.5 algorithms. The first two are during the
Core group of phases where the ‘current best’ temperature
and tangent pressure information from MLS are used in a
forward model, in conjunction with a water vapor profile
representing 110% relative humidity with respect to ice, to
obtain a reasonable upper limit for clear sky radiances. Finally,
after the Core+R2B phase, once the best information on
water vapor has been obtained from MLS, a new forward
model estimate is computed using the MLS retrieved water
observations to re-flag cloud contaminated radiances for all
radiometers to be used in later phases.

Appropriate thresholds for cloud contamination have been
empirically determined for each radiometer, based on simula-
tions. The thresholds have been chosen to maximize the use of
radiances consistent with not severely affecting the retrieved
species. Flagged radiances are either not used (in the case of
the 240 GHz and some 118 GHz radiances), or weighted less
in the retrievals (190 GHz radiances). To give one example,
the software ignores MLS 240 GHz radiance observations in
cases where the observed radiances are more than 5 K greater
or 30 K smaller than those predicted by the forward model for
a selected optically thin channel in the 240 GHz radiometer.

D. A note on spectrally correlated noise
The MLS radiances measured by the 640 GHz radiometer

show an unexpected signature of spectrally correlated noise
in their observations of limb radiance. Within one integration
period, the noise signature is largely consistent from channel
to channel across the whole of the 640 GHz band. This
behavior is inconsistent with the pre-launch understanding of
the behavior of the 640 GHz receiver formed from ground-
based calibration studies. The receiver has had this property
since construction, but it was not recognized in the pre-launch
calibration data because of differences between the calibration
and limb observation regimes. The 2.5 THz receivers show a
smaller manifestation of the same phenomenon.
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TABLE I
THE ORIGIN OF EACH OF THE ‘STANDARD PRODUCTS’ FROM V1.5

Product Origin
BrO Core+R4 (640 GHz)
CH3CN Core+R2B (190 GHz)
ClO Core+R4 (640 GHz)
CO Core+R3 (240 GHz)

H2O Core+R2A (190 GHz)

HCl Core+R4 (640 GHz)
HCN Core+R2B (190 GHz)

HNO3
Core+R3 (240 GHz) for 10 hPa or greater, Core+R2
(190 GHz) for lesser pressures

HO2 Core+R4 (640 GHz)
HOCl Core+R4 (640 GHz)
N2O Core+R4 (640 GHz)
O3 Core+R3 (240 GHz)
OH Core+R5 (2.5 THz)
Temperature Core for pressures of 1 hPa or greater, Core+R2 for lesser pressures.

TABLE II
THE PHASES THAT FORM THE V1.5 RETRIEVAL ALGORITHMS.

Phase Target speciesa Measurements Comment
Init-pTan T, pTan (GHz), GPH R1A (118 GHz) Very quick forward model

Update-pTan T, pTan (GHz), GPH R1A (118 GHz) Slower more accurate model
Init-UTH U.T. H2O R2 (190 GHz)

Core+R2A T, pTan (GHz), GPH, H2O, N2O,
HNO3, O3

R1A (118 GHz), R2 (190 GHz)
H2O retrieved down to
316 hPa, other species to 215
or 100 hPa, uses costly full
forward model.

Core+R2B T, pTan (GHz), GPH, H2O, HNO3,
ClO, O3, HCN, CH3CN R1A (118 GHz), R2 (190 GHz)

Main H2O radiances excluded,
products retrieved down to
between 316 and 100 hPa.
Fast linear forward model
used.

High-Cloud Baseline terms as proxy for cloud
contamination R2 (190 GHz), R3 (240 GHz)

Used for flagging clouds in
Core+R3 and later phases, in
addition to forming basis for
cloud water products.

Core+R3 T, pTan (GHz), GPH, O3, CO, HNO3 R1A (118 GHz), R3 (240 GHz) Retrievals down to 316 hPa

Core+R4A
T, pTan (GHz), GPH, ClO, BrO,
HO2, HOCl, HCl, O3, HNO3,
CH3CN

R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa

Core+R4B T, pTan (GHz), GPH, N2O R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa

Core+R5 T, pTan (GHz, THz), GPH, OH, O3
R1A (118 GHz), R5H and R5V
(2.5 THz) Retrievals down to 68 hPa

aTangent pressure and Geopotential height have been abbreviated to pTan (GHz/THz) and GPH respectively. Minor state vector components such as
‘baseline’ have been omitted.

The Level 1B algorithms report two estimates of the noise
on individual radiances. The first noise is the spectrally varying
component for each channel in each radiometer. The second
component is that which is spectrally flat. The observed behav-
ior in the 640 GHz receiver results in a larger than anticipated
spectrally flat component to the noise. Prior to launch, it
had been understood that the spectrally flat component would
be sufficiently small that it could be essentially ignored in
Level 2. The baseline terms, represented by a fairly coarse
vertical profile on pressure surfaces, would be sufficient to

account for unexplained radiances. However, the observed
large amounts of spectrally flat noise, which vary rapidly from
minor frame to minor frame, dictate a switch to having an
independent baseline for each minor frame. It was decided
for consistency to switch to this representation not just for
640 GHz, but all the receivers.

E. Some selected results from v1.5
A full discussion of the results from the v1.5 algorithms and

a discussion of its performance are beyond the scope of this
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paper. A detailed discussion of data quality will be supplied
to those wishing to use MLS data [13]. Figure 3 gives as an
example a pair of retrieved stratospheric N2O profiles on 10th
January 2005, one at the equator, one at high northern latitudes
in the winter polar vortex. Other examples of retrieved MLS
products are given in [14].

F. Plans for future versions
The main goal for the next version of the Level 2 algorithm

is to retrieve a water vapor product with a higher vertical
resolution of twelve surfaces per decade change in pressure in
the tropopause region, compared to the typical six per decade.
Such a product, while having greater vertical resolution than
the ‘standard’ water vapor product, will necessarily have a
poorer precision.

Significant improvements in forward model efficiency (with
a slight penalty in accuracy) are anticipated in future versions,
through the optional use of a ‘pre-frequency averaging’ ap-
proximation. This will allow for the use of the full non-linear
forward model in cases where up to now its use has involved
a prohibitive amount of computational effort (such as for most
of the 640 GHz radiances).

Improved knowledge of the spectroscopic parameters in-
fluencing the MLS radiance signals will undoubtedly lead
to improvements in many MLS products. While most of the
spectral lines targeted by MLS are well characterized, some
measurements are influenced by emission from other lines
whose parameters are currently more poorly known. In addi-
tion, further (probably minor) improvements to our knowledge
of the calibration of the MLS instrument are anticipated, which
will have an impact on the MLS data quality.

In the longer term, we plan to better retrieve upper tro-
pospheric composition in regions of thick cloud, by explicitly
modeling the impact of cloud on the MLS radiances. Currently,
as described in section VI-C, affected radiances are ignored
or down-weighted in the retrievals. The ability to accurately
model such signals will yield significant additional information
on composition in this scientifically important region of the
atmosphere.

VII. SUMMARY

This paper has reviewed the retrieval algorithms imple-
mented for the EOS MLS instrument. In conjunction with its
companion papers, this should serve as a useful reference for
those wishing to better understand the EOS MLS measurement
system, and as possible guidance for those implementing
retrieval schemes for other instruments. The algorithms are
performing well on incoming MLS data, and yielding results
whose quality is broadly in line with pre-launch expectations.

APPENDIX
THE CALCULATION OF COLUMN ABUNDANCES

In addition to retrieving profiles of atmospheric temperature
and composition, the MLS Level 2 software also computes
column abundances above the tropopause for most species.
Tropopause pressure is derived from the MLS temperature

profiles, according to the standard World Meteorological Orga-
nization definition, adapted appropriately for use with pressure
rather than altitude coordinates.

Given a retrieved abundance profile fi for a linear represen-
tation basis (see section II-C.4) on a set of pressure surfaces
Pi, with i = 1 . . . n, the column abundance (number per cm2)
above a pressure level P ? is given by

C =
1

mg

{

fnPa

+

n−1
∑

i=1

fi

∆ζi

[

Pb (ζi+1 − ζb) +
Pi+1 − Pb

ln 10

]

+
n

∑

i=2

fi

∆ζi−1

[

Pc (ζc − ζi−1) +
Pc − Pi

ln 10
− Pi∆ζi−1

]

+ f1 (Pd − P1)

}

, (21)

where ζx = − log10(Px),

ζa =max (ζn, ζ?) ,

ζb =min [max (ζi, ζ
?) , ζi+1] ,

ζc =min [max (ζi−1, ζ
?) , ζi] ,

ζd =min (ζ1, ζ
?) ,

∆ζi = ζi+1 − ζi, m is the molecular mass of dry air and
g is a nominal value of the earth’s gravitational field. Using
1

mg
= 0.789 DU ppmv−1 hPa−1 gives the column in milli-

atm-cm (Dobson units) for pressure in hPa and concentrations
fi in ppmv.
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Fig. 3. An example of some results from the v1.5 algorithms for measurements made on 10th January 2005. The case shown is two retrievals of N2O
abundance from the 640 GHz radiances. The left hand plots show retrieved N2O with the error bars indicating the estimated precision. The right hand plots
show the measured (symbols) radiances in channels 4, 10, 11, 12 and 13 of the 640 GHz N2O band (red, green, blue, orange, magenta respectively). The
widths of the symbols denote the reported noise (spectrally varying component) on the measurements. The solid lines show the fitted radiances estimated by
the forward model, corresponding to the retrieved N2O profile. These are shown only for the radiances used in the retrieval, hence the absence of the solid
lines below ∼17 km.
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